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The equation of state of the newborn neutron star matter with untrapped neutrinos is
calculated with the AV18 potential along isentropic paths. The same calculations are done
with the AV14 potential for the sake of comparison. Temperature–density correlation,
proton fraction, adiabatic index, and the velocity of sound are also obtained at different
entropies. It is shown that the proton fraction (adiabatic index) increases (decreases)
by increasing entropy. We have shown that our calculated equations of state obey the
causality condition. The results are compared with those of others in the literature.

1. INTRODUCTION

Neutron stars are formed in the gravitational collapse of supernovae (Shapiro
and Teukolsky, 1983). Newborn neutron stars differ from ordinary neutron stars, in
the sense that the matter inside them has nearly constant entropy per nucleon of the
order 1–2 in the units of the Boltzmann constant (kB) (Betheet al., 1979; Burrows
and Lattimer, 1986; Keil and Janka, 1995; Ponset al., 1999; Sumiyoshiet al.,
1995). In the case of untrapped neutrinos, we can consider a matter consisting of
neutrons, protons, electrons, and muons under conditions of charge neutrality and
beta equilibrium (Burrows and Lattimer, 1986; Keil and Janka, 1995; Ponset al.,
1999; Sumiyoshiet al., 1995).

The properties of the neutron star matter, especially its equation of state, have
a crucial role for studying the structure and evolution and determining the mass of
neutron stars (Bombaci, 1996; Lattimeret al., 1991; Prakash, 1994; Prakashet al.,
1988).

In recent years, the equation of state of the neutron star matter is calcu-
lated by various many-body methods. The results of these calculations show large
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differences, since these are based on various models of the nucleon–nucleon po-
tentials that are not phase-shift equivalent (Engviket al., 1997). On the contrary,
by using the modern potentials, such as the new Argonne potential (AV18 potential)
(Wiringaet al., 1995), these differences become small (Engviket al., 1997). This
feature is very important for a more precise mass determination (Bombaci, 1996;
Prakashet al., 1988).

Recently, we have used the lowest order constrained variational (LOCV)
method for investigating the properties of nuclear matter at zero (Bordbar and
Modarres, 1997, 1998) and finite (Bordbar, in press; Modarres and Bordbar, 1998)
temperatures. More recently, we have calculated the equation of state of cold
neutron star matter and some of its properties (Bordbar and Riazi, submitted).

In the present paper, we introduce the equation of state of newborn neutron star
matter and some of its properties in the case of untrapped neutrinos, using LOCV
method. In our calculations, we employ the AV18 potential (Wiringaet al., 1995),
together with the AV14 potential (Wiringaet al., 1984) for the sake of comparison.

2. LOCV METHOD AT T 6= 0

By using variational method, we can write the wave function of a system of
A interacting particles as

ψ = Fφ, (1)

where theA-particle correlation function is taken to be

F = S
∏
i> j

f (i j ), (2)

andφ is a Slater determinant of the single-particle wave functions. In the afore-
mentioned equation,S is the symmetrizing operator and the two-body correlation
operatorsf (ij ) are as follows

f (i j ) =
3∑

α, p=1

f p
α (i j )Op

α (i j ), (3)

whereα = {J, L , S, T, Tz} and

Op=1,3
α = 1,

(
2

3
+ 1

6
S12

)
,

(
1

3
− 1

6
S12

)
, (4)

whereS12 is the tensor operator (Wiringaet al., 1995).
Now, we consider up to the two-body term in the cluster expansion for the

energy functional,

E([ f ]) = 1

A

〈ψ | H | ψ〉
〈ψ | ψ〉 = E1+ E2. (5)

For nucleonic matter at finite temperature (T 6= 0), E1 is the Fermi-gas kinetic
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energy expression,

E1 =
∑

i=n, p

∑
k

h2k2

2mi
ni (k, T , ρi ), (6)

whereni (k, T , ρi ) is the Fermi–Dirac distribution function,

ni (k, T , ρi ) = 1

eβ[εi (κ,T ,ρi )−µi (T ,ρi )] + 1
. (7)

In the aforementioned equationβ = 1
kBT andµi are the chemical potentials,ρi

are the nucleonic number densities, and

εi (k, T , ρi ) = h2k2

2m∗i (T , ρi )
(8)

are the single particle energies, associated with the protons and neutrons. Them∗i
are the effective masses.

The two-body energy,E2, is

E2 = 1

2A

∑
i j

〈i j | V (12) | i j − j i 〉, (9)

where

V(12)= − h2

2m

[
f (12),

[∇2
12, f (12)

]]+ f (12)V(12) f (12). (10)

The general form of two-body nucleon–nucleon interaction,V(12), is
(Wiringaet al., 1995)

V(12)=
18∑

p=1

V p(r12)O
p
12, (11)

where

Op=1−18
12 = 1, σ1 · σ2, τ1 · τ2, (σ1 · σ2)(τ1 · τ2), S12, S12(τ1 · τ2),

L · S, L · S(τ1 · τ2), L2, L2(σ1 · σ2), L2(τ1 · τ2),

L2(σ1 · σ2)(τ1 · τ2), (L · S)2, (L · S)2(τ1 · τ2),

T12, (σ1 · σ2)T12, S12T12, (τz1 · τz2). (12)

Here,T12 is the isotensor operator (Wiringaet al., 1995).
Now, as in our previous calculations, we minimize the two-body energy with

respect to the variations in the correlation functionsf p
α but subject to the normal-

ization constraint (Bordbar, in press; Bordbar and Modarres, 1997, 1998; Modarres
and Bordbar, 1998). Each correlation functionf p

α is required to heal to the Pauli
functionhTz,

hTz =
{[

1− 1
ν

(
0i (r )
ρ

)2]− 1
2 , Tz = ±1

1, Tz = 0,
(13)
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where

0i (r ) = 2ν

(2π )2

∫ ∞
0

ni (k, T , ρi )J0(kr )k2dk, (14)

andν = 2. The total nucleonic number density,ρ , is

ρ = ρp+ ρn. (15)

By minimizing the two-body energy, we get a set of Euler–Lagrange differ-
ential equations similar to those described in our previous works (Bordbar and
Modarres, 1998). The procedure for the calculation of energy has been fully dis-
cussed in Bordbar and Modarres (1998).

3. EQUATION OF STATE

Now, we consider the newborn neutron star matter in the case of untrapped
neutrinos, which has nearly constant entropy per nucleon,s∼ 1–2. This matter is
an uncharged composition of neutrons, protons, electrons, and muons, that is in
beta equilibrium.

The contribution from the energy of leptons (electrons and muons), which
should be added to Eq. (5), is as follows

EL =
∑

i=e,µ

∑
k

ni (k, T , ρi )[(mi c
2)2+ h2c2k2]1/2. (16)

The conditions of charge neutrality and beta equilibrium impose the following
constraints on the calculation of the energy of neutron star matter,

ρp = ρe+ ρµ (17)

and

µn− µp = µe = µµ. (18)

The equation of state of newborn neutron star matter,P(ρ , s), can be simply
obtained using

P(ρ , s) = ρ2∂E(ρ , s)

∂ρ
, (19)

wheres is the entropy per nucleon. In Fig. 1, we have presented the pressure of
newborn neutron star matter as a function of total number density (ρ) with the AV18

and AV14 potentials at different entropies (s= 1.0, 2.0). We have also presented
the results of our calculations for the cold neutron star matter (s= 0.0) (Bordbar
and Riazi, submitted). We see that for all values of entropy, the equation of state
with the AV18 potential is stiffer than those with the AV14 potential. We also see that
with increasing density, the differences between the equations of state at different
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Fig. 1. The equation of state of newborn neutron star matter ats= 2.0
(upper curves) and 1.0 (middle curves) and cold neutron star matter
(lower curves) with the AV18 (full curves) and AV14 (dashed curves)
potentials. The results of Strobelet al.(1999) (dotted curves) are given
for comparison.

entropies become more appreciable. In this figure, we have also shown the results
of Strobelet al. (1999) for comparison. We can see that the equations of state of
Strobelet al. (1999) are much harder than those of ours. It can also be seen that
the differences between the results of Strobelet al. (1999) at different entropies
are more appreciable relative to our results. This is because we do not vary the
effective masses (m∗i ) and choosem∗i = mi in our calculations, since in the case
of constant entropy, we have found that the internal energy does not change with
these parameters (Modarres and Bordbar, 1998).
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Fig. 2. Temperature versus total number density for newborn neutron
star matter ats= 2.0 (upper curves) and 1.0 (middle curves) with the
AV18 (full curves) and AV14 (dashed curves) potentials. The results of
Strobelet al. (1999) (dotted curves) are given for comparison.

The temperature of newborn neutron star matter as a function of total number
density with the AV18 and AV14 potentials ats= 1.0 and 2.0 is given in Fig. 2.
We see that the temperature increases with increasing entropy. Also, the calcu-
lated temperatures with the AV18 potential are nearly identical with those of AV14

potential, especially at low densities. In Fig. 2, we have also shown the results of
Strobelet al. (1999). The large differences between our results and the results of
Strobelet al. (1999) are due to the choice of the effective masses, as described in
the previous paragraph.

In Fig. 3, we have plotted the proton fraction of the newborn neutron star
matter as a function of total number density with the AV18 and AV14 potentials
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Fig. 3. Proton fraction versus total number density for newborn neu-
tron star matter ats= 2.0 (upper curves) and 1.0 (middle curves) and
cold neutron star matter (lower curves) with the AV18 (full curves) and
AV14 (dashed curves) potentials.

at s= 1.0 and 2.0 as well as for cold neutron star matter (s= 0.0) (Bordbar
and Riazi, submitted). It is seen that the proton fraction increases by increasing
entropy. This result has an important implication in the investigation of the cooling
of neutron stars (Lattimeret al., 1991; Prakash, 1994). Also, the calculations with
the AV18 potential show a higher proton fraction than those with the AV14 potential,
especially at high densities.

The adiabatic index,γ , is defined by

γ =
(
∂lnP

∂lnρ

)
s

. (20)
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This parameter is of crucial importance for the core bounce of the collapsing
stars. It is well known that as the density approaches to nuclear matter density,
γ rises above 4/3 (a value that corresponds to relativistic leptons). This means
that the collapse comes rapidly to a halt, and is reversed into a bounce. Further-
more, the stability of a star depends on the value ofγ in the core (Shapiro and
Teukolsky, 1983). In Fig. 4, we have shown the results of our calculations for
the adiabatic index (γ ) with the AV18 and AV14 potentials at different entropies
(s= 0.0, 1.0, 2.0). It can be seen thatγ > 4/3 even at low densities and becomes
even more at high densities. We can also see thatγ decreases with increasing

Fig. 4. Adiabatic index versus total number density for newborn neu-
tron star matter ats= 2.0 (lower curves) and 1.0 (middle curves) and
cold neutron star matter (upper curves) with the AV18 (full curves) and
AV14 (dashed curves) potentials. The results of Strobelet al. (1999)
(dotted curves) are given for comparison.
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entropy. In this figure, we have also presented the results of Strobelet al. (1999).
There is an overall agreement between our results and those of Strobelet al.
(1999).

In order to check the causality condition of equations of state calculated in
this paper, we calculate the velocity of sound,vs, according to

vs

c
=
(

d P

dε

)1/2

, (21)

Fig. 5. Velocity of sound (in the units of the velocity of light in the
vacuum) versus total number density ats= 2.0 (upper curves), 1.0
(middle curves), and 0.0 (lower curves) with the AV18 (full curves)
potential. The results of Strobelet al. (1999) (dotted curves) are
given for comparison.
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whereε is the mass–energy density,

ε = ρ(E +mc2), (22)

m is the nucleon mass, andc is the velocity of light in the vacuum. In Fig. 5, the
velocity of sound (in the units ofc) is shown with the AV18 potential ats= 0.0,
1.0, and 2.0. The velocity of sound with the AV14 potential (which is not shown
in this figure) is nearly identical to that of the AV18 potential. It is seen that the
velocity of sound increases with both increasing entropy and density, but it is
always lower than the velocity of light in vacuum (c). Therefore, all equations of
state calculated in this paper obey the causality condition. In Fig. 5, we have also
presented the results of Strobelet al. (1999). There is a considerable difference
between the two calculations, which is caused by the differences in the equations
of state, as discussed earlier.

4. SUMMARY AND CONCLUSION

The equation of state of the newborn neutron star matter in the case of
untrapped neutrinos was presented. Our calculations were based on the LOCV
method. The nucleon–nucleon potentials used in these calculations were AV18 and
AV14. The following properties were also calculated and compared to the results
of Strobelet al. (1999):

• temperature–density relation,
• proton fraction as a function of total number density,
• adiabatic index as a function of total number density, and
• the velocity of sound as a function of total number density.

Our results indicated that the entropy affects the equation of state, especially
at high densities. The temperature and proton fraction were found to increase with
the entropy. The adiabatic index was found to be greater than 4/3 at all densities
(and entropies). It is interesting to note that this parameter becomes fairly constant
at densities beyond∼0.6 fm−3. Finally, the causality condition was shown to hold
for all of the results presented in this paper.
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